Code No: R20A0513

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, June 2025 Artificial Intelligence

(B.Tech-AIML)

Roll No

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions Chapting ONE Questions.

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

		XXX			
		SECTION-I	BCLL	CO(s)	Marks
1	\boldsymbol{A}	Explain how agents interact with environments through	L2	CÔ-I	[7M]
		sensors and actuators with the help of block diagram			
	$\boldsymbol{\mathit{B}}$	With the help of example, explain Breadth First Search	L3	CO-I	[7M]
		algorithm.			
		OR			
2	\boldsymbol{A}	Describe how the components of agent programs work	L2	CO-I	[7M]
	\boldsymbol{B}	Explain A* algorithm. What are the conditions for optimality?	L2	CO-I	[7M]
		SECTION-II			
3	\boldsymbol{A}	Give a brief note on Alpha-Beta Pruning	L1	CO-II	[7M]
	\boldsymbol{B}	Explain how A* search improves upon other search	L2	CO-II	[7M]
		algorithms.			
		OR			
4	\boldsymbol{A}	Discuss Form grammar of sentences in propositional logic.	L2	CO-II	[7M]
	\boldsymbol{B}	Write down simple backward-chaining algorithm for first-	L1	CO-II	[7M]
		order knowledge bases.			
		SECTION-III			
5	\boldsymbol{A}	Discuss the knowledge representation issues in detail.	L2	CO-III	[7M]
	$\boldsymbol{\mathit{B}}$	With the help of example, describe Nonmonotonic Reasoning	L3	CO-III	[7M]
		OR			
6	\boldsymbol{A}	State Baye's rule. Explain its applications.	L2	CO-III	[7M]
	\boldsymbol{B}	Write down a method for constructing Bayesian networks	L1	CO-III	[7M]
		SECTION-IV			
7	\boldsymbol{A}	What is learning? Explain different forms of learning.	L2	CO-IV	[7M]
	\boldsymbol{B}	Discuss learning by taking advice with an example.	L2	CO-IV	[7M]
		OR			
8	\boldsymbol{A}	How does learning from examples differ from rote learning	L2	CO-IV	[7M]
	\boldsymbol{B}	Write down the steps in decision tree learning algorithm	L1	CO-IV	[7M]
		SECTION-V			
9	\boldsymbol{A}	Discuss the importance of domain knowledge in the expert	L2	CO-IV	[7M]
		systems.		•	. ,
	\boldsymbol{B}	Describe the capabilities of expert systems that allow them to	L2	CO-IV	[7M]
		interact effectively with users.			

OR

10 A How are expert systems built? Explain with an example.

B Evaluate the strengths and weaknesses of expert systems in real-world applications.

L2 CO-IV [7M]

CO-IV [7M]
